电工学习网

 找回密码
 立即注册

如何消除变频器电磁干扰

2014-5-9 17:09| 编辑:电工学习网| 查看: 6271| 评论: 0

       变频器干扰的来源
  首先来讲述下来自外部电网的干扰。电网中的谐波干扰主要通过变频器的供电电源干扰变频器。电网中存在大量谐波源如各种整流设备、交直流互换设备、电子电压调整设备,非线性负载及照明设备等。
  变频器的逆变器大 多采用PWM技术,当工作于开关模式且作高速切换时,发生大量耦合性噪声。因此变频器对系统内其它电子、电气设备来说是一电磁干扰源。变频器的输入和输出电流中,都含有很多高次谐波成分。
  除了能构成电源无功损耗的较低次谐波外,还有许多频率很高的谐波成分。将以各种方式把自己的能量传达进来,形成对变频器本身和其它设备的干扰信号。
  输入电流的波形 变频器的输入侧是二极管整流和电容滤波电路。显然只有电源的线电压UL大于电容器两端的直流电压UD时,整流桥中才有充电电流。因此,充电电流总是呈现在电源电压的振幅值附近,呈不连续的冲击波形式。具有很强的高次谐波成分。有关资料标明,输入电流中的5次谐波和7次谐波的谐波分量是最大的分别是50HZ基波的80%和70%。
  输出电压与电流的波形绝大多数变频器的逆变桥都采用SPWM调制方式,其输出电压为占空比按正弦规律分布的系列矩形式形波;由于电动机定子绕组的电感性质,定子的电流十分接近于正弦波。但其中与载波频率相等的谐波分量仍是较大的
  另外这些负荷都使电网中的电压、电流发生波形畸变,从而对电网中其它设备发生危害的干扰。变频器的供电电源受到来自被污染的交流电网 干扰后若不加处理,电网噪声就会通过电网电源电路干扰变频器。供电电源的干扰对变频器主要有过压、欠压、瞬时掉电浪涌、跌落尖峰电压脉冲,射频干扰。
  晶闸管换流设备对变频器的干扰 当供电网络内有容量较大的晶闸管换流设备时,由于晶闸管总是每相半周期内的局部时间内导通,容易使网络电压呈现凹口,波形严重失真。使变频器输入侧的整流电路有可能因出现较大的反向回复电压而受到损害,从而导致输入回路击穿而烧毁。
  电力弥补电容对变频器的干扰 电力部门对用电单位的功率因数有一定的要求,为此,许多用户都在变电所采用集中电容补偿的方法来提高功率因数。弥补电容投入或切出的暂态过程中,网络电压有可能呈现很高的峰值,其结果是可能使变频器的整流二极管因承受过高的反向电压而击穿。
  其次是变频器自身对外部的干扰。变频器的整流桥对电网来说是非线性负载,所产生的谐波对同一电网的其它电子、电气设备发生谐波干扰。
  变频器包括整流电路和逆变电路,输入的交流电经过整流电路和平波回路,转换成直流电压,再通过逆变器把直流电压变换成不同宽度的脉冲电压(称为脉宽调制电压,PWM)。用这个PWM电压驱动电机,就可以起到调整电机力矩和速度的目的。
      这种工作原理导致以下三种电磁干扰:
  1、谐波干扰
  整流电路会产生谐波电流,这种谐波电流在供电系统的阻抗上产生电压降,导致电压波型发生畸变,这种畸变的电压对于许多电子设备形成干扰(因为大部分电子设备仅能工作在正弦波电压条件下),常见的电压畸变是正弦波的顶部变平。谐波电流一定时,电压畸变在弱电源的情况下更加严重,这种干扰的特征是会对使用同一个电网的设备形成干扰,而与设备与变频器之间的距离无关;
  2、射频传导发射干扰
  由于负载电压为脉冲状,因此变频器从电网吸取电流也是脉冲状,这种脉冲电流中包含了大量的高频成分,形成射频干扰,这种干扰的特征是会对使用同一个电网的设备形成干扰,而与设备与变频器之间的距离无关;
  3、射频辐射干扰
  射频辐射干扰来自变频器的输入电缆和输出电缆。在上述的射频传导发射干扰的情形中,变频器的输入输出电缆上有射频干扰电流时,由于电缆相当于天线,必然会产生电磁波辐射,产生辐射干扰。变频器输出电缆上传输的PWM电压,同样包含丰富的高频的成分,会产生电磁波辐射,形成辐射干扰。辐射干扰的特征是,当其他电子设备靠近变频器时,干扰现象变得严重。
  根据电磁学的基本原理,形成电磁干扰必须具备三要素:电磁干扰源、电磁干扰途径、对电磁干扰敏感的系统。为防止干扰,可采用硬件抗干扰和软件抗干扰。其中,硬件抗干扰是最基本和最重要的抗干扰措施,一般从抗和放两方面入手来抑制干扰,其总体原则是抑制和消除干扰源、切断干扰对系统的耦合通道、降低系统干扰信号的敏感性。具体措施在工程上可采用隔离、滤波、屏蔽、接地等方法。
以下内容是解决现场干扰的主要步骤:
  1、采用软件抗干扰措施
  具体来讲就是通过变频器的人机界面下调变频器的载波频率,把该值调低到一个适当的范围。如果这个方法不能奏效,那么只能采取下面的硬件抗干扰措施。
  2、进行正确的接地
  通过现场的具体调研我们可以看到,现场的接地情况是不甚理想的。而正确的接地既可以是系统有效地抑制外来干扰,又能降低设备本身对外界的干扰,是解决变频器干扰最有效的措施。具体来讲就是做到以下几点:
  (1)变频器的主回路端子PE(E、G)必须接地,该接地可以和该变频器所带的电机共地,但不能与其它的设备共地,必须单独打接地桩,且该接地点应该尽量远离弱电设备的接地点。同时,变频器接地导线的截面积应不小于4mm2,长度应控制在20m以内。
  (2)其它机电设备的地线中,保护接地和工作接地应分开单独设接地极,并最后汇入配电柜的电气接地点。控制信号的屏蔽地和主电路导线的屏蔽地也应分开单独设接地极,并最后汇入配电柜的电气接地点。
  3、屏蔽干扰源
  屏蔽干扰源是抑制干扰的很有效的方法。通常变频器本身用铁壳屏蔽,可以不让其电磁干扰泄露,但变频器的输出线最好用钢管屏蔽,特别是以外部信号(从控制器上输出4~20mA信号)控制变频器时,要求该控制信号线尽可能短(一般为20m以内),且必须采用屏蔽双绞线,并与主电路线(AC380)及控制线(AC220V)完全分离。此外,系统中的电子敏感设备线路也要求采用屏蔽双绞线,特别是压力信号。且系统中所有的信号线决不能和主电路线及控制线放于同一配管或线槽内。为使屏蔽有效,屏蔽层必须可靠接地。
  4、合理的布线
  具体方法有:
  (1)设备的电源线和信号线应尽量远离变频器的输入输出线。
  (2)其它设备的电源线和信号线应避免和变频器的输入输出线平行。
  如果采取了以上的办法之后还是不能够奏效,那么继续以下办法:
  5、干扰的隔离
  所谓干扰的隔离,是指从电路上把干扰源和易受干扰的部分隔离开来,使他们不发生电的联系。通常是在电源和控制器及变送器等放大器电路之间在电源线上采用隔离变压器以免传导干扰,电源隔离变压器可应用噪声隔离变压器。
  6、在系统线路中设置滤波器
  设备滤波器的作用是为了抑制干扰信号从变频器通过电源线传导干扰到电源和电动机。为减少电磁噪声和损耗,在变频器输出侧可设置输出滤波器;为减少对电源干扰,可在变频器输入侧设置输入滤波器。若线路中有敏感电子设备如控制器和变送器等,可在该设备的电源线上设置电源噪声滤波器以免传导干扰。滤波器根据使用位置的不同,可分为:
  (1)输入滤波器
  通常有两种:
  a、线路滤波器:主要由电感线圈构成,它通过增大线路在高频下的阻抗来削弱频率较高的谐波电流。
  b、辐射滤波器:主要由高频电容器构成,它将吸收频率点很高的、具有辐射能量的谐波成分。
  (2)输出滤波器也由电感线圈构成
  它可以有效地削弱输出电流中的高次谐波成分。不仅起到抗干扰的作用,还能消弱电动机中由高次谐波产生的谐波电流引起的附加转矩。对于变频器输出端的抗干扰措施,必须注意一下方面:
  a、变频器的输出端不允许接入电容器,以免在功率管导通(关断)瞬间,产生峰值很大的充电(或放电)电流,损害功率管;
  b、当输出滤波器由LC电路构成时,滤波器内接入电容器的一侧,必须与电动机侧相接。
  7、采用电抗器
  在变频器的输入电流中频率较低的谐波成分(5次谐波、7次谐波、11次谐波、13次谐波等)所占的比重是很高的,它们除了可能干扰其它设备的正常运行之外,还因为它们消耗了大量的无功功率,使线路的功率因素大为下降。在输入电路内串入电抗器是抑制较低谐波电流的有效方法。根据接线位置的不同,主要有以下两种:
  (1)交流电抗器
  串联在电源与变频器的输入侧之间。其主要功能有:
  a、通过抑制谐波电流,将功率因素提高至(0.75-0.85);
  b、削弱输入电路中的浪涌电流对变频器的冲击;
  c、削弱电源电压不平衡的影响。
  (2)直流电抗器
  串联在整流桥和滤波电容器之间。它的功能比较单一,就是削弱输入电流中的高次谐波成分。但在提高功率因素方面比交流电抗器有效,可达0.95,并具有结构简单、体积小等优点。
  因此,变频器的抗干扰措施主要包括在变频器进线部分加装交流电抗器和滤波器,进线和出线采用屏蔽电缆,所有电缆的屏蔽层与电抗器、滤波器、变频器和电机的保护地共同接地,且该接地点与其他接地点分开,保持足够的距离。同时,信号电缆和变频器的动力电缆不要平行布置。
  此外,为防止变频器干扰信号和控制回路,需要给控制器、仪表和工控机采用单独的隔离电源进行供电。

看过《如何消除变频器电磁干扰》的人还看了以下文章:

发表评论

最新评论

下级分类

  • 变频器的接线方法图解 教你怎么搞定变频器
  • 西门子V20变频器设置步骤
  • 变频器过流故障的原因和处理方法
  • ABB变频器显示错误代码F0001的原因
  • 变频器频率调不上去原因和解决方法
  • 施耐德变频器通用参数设置步骤
热门推荐

电工学习网 ( )

GMT+8, 2023-4-18 04:39

Powered by © 2011-2022 www.shop-samurai.com 版权所有 免责声明 不良信息举报

技术驱动未来! 电工学习网—专业电工基础知识电工技术学习网站。

栏目导航: 工控家园 | 三菱plc | 西门子plc | 欧姆龙plc | plc视频教程

返回顶部