电工学习网

 找回密码
 立即注册

EtherNet/IP工业以太网协议白皮书

2013-8-11 09:45| 编辑:电工学习网| 查看: 35339| 评论: 0

以太网性能的发展

 
    C. 以太网性能的发展 
   近年来,随着以太网技术的发展,先后出现了快速以太网和千兆以太网。IEEE 802.3u规范标准对快速以太网进行了定义。快速以太网基本速率为100Mbps,它与10Mbps以太网采用相同的帧结构、寻址方式和CSMA/CD介质访问协议。然而,快速以太网中的所有网络定时参数都需要除以10。因此,在某些配置情况下,与10Mbps以太网相比,快速以太网两个节点之间的距离可能会短一些。 
     快速以太网具有传统以太网10倍的线速度,能够充分满足高带宽应用项目的要求,例如视频、音频传输,或者是网络中大数据量的文件交换。尽管如此,某些应用项目并不满足于单纯网络线速度的提高。特别是在车间现场,有许多基于微处理器的智能设备连接到以太网中,例如I/O模块、传感器、执行机构、变频器以及其它接口设备。这些设备发送和接收的数据都被封装到64个字节长度的以太网帧内(这是以太网支持的最小帧长度)。因此,影响这些设备性能的主要因素在于微处理器速度和嵌入的固件,而不是网络的线速度。这些设备几乎不可能完全利用10Mbps以太网的带宽,除非是由于应用层协议的效率较低,造成设备重复进行点对点的数据轮询。 
     另外一个显著的优势在于,100Mbps以太网比10Mbps以太网有着更高的数据冲突恢复能力。正如前面所述,100Mbps以太网的数据冲突后退时间是10Mbps以太网的十分之一。由于网络负荷较重,经常出现数据冲突,100Mbps以太网的性能要明显优于10Mbps以太网。而在数据冲突不严重的时候,100Mbps以太网能够提供更大的带宽,支持更多的网络负荷。如果某一应用项目需要使用多个交换机,100Mbps的网络速率将有利于交换机之间的连接。当然,如果网络负载和数据冲突在10Mbps以太网中表现不是很明显,仅仅是简单地升级到100Mbps以太网,这样的投资并不会有什么收效。 
     D. 隐式报文(I/O信息)在EtherNet/IP网络中的传输 
    在4.5节中,已经介绍了通讯路径以及显式报文和非连接报文在点对点数据交换中的应用。 
     第二类报文,也就是隐式报文。通过应用层协议的支持,实现了网络节点之间的透明数据交换,无论是报文的“生产者”还是“消费者”,在报文传输之前,都知道这个报文格式。当隐式报文用于I/O信息传输时,它能够充分利用生产者/消费者通讯模式的优势。另外,它还可以用于控制器之间预定信息的传输。 
     在CIP协议中,隐式报文有四种主要的应用方式: 
     轮询
     选通 
     状态改变 
     周期循环 
     轮询方式与传统的I/O网络通讯十分相似,扫描器(主站)不断地向I/O适配器(从站)发出输出信息并接收输入信息。 
     选通方式是一种特殊的轮询,扫描器只发出一个多点传送的数据请求报文,从设备会陆续将它们的数据传送回扫描器,而不再需要其它来自扫描器的信息。 
     周期循环方式将按照预定的时间周期传送数据,每个报文都有一个连接标识。任何其它设备,只要知道这个连接标识,就能接收网络上符合这一连接标识的数据。 
    状态改变方式与周期循环方式类似,不同之处在于,只有当数据变化时才会发出报文,而不是基于时间事件。同时,状态改变方式还要发出一个周期性循环的“心跳”信号,以便让数据的“消费者”知道这一设备还处于在线状态,而且工作正常。 
     上述四种方式中,周期循环是EtherNet/IP网络中首选的隐式报文数据交换方式,它在数据完整性和网络流量优化方面有着较好的平衡。 
     为了让CIP协议能够在以太网中实现,其关键问题在于隐式报文可能有多个数据“消费者”,它们要共享同一个数据包,然而TCP协议只能用于点对点的数据交换,所以它发送的广播数据包会被IP层拒绝,而且还可能增加终端设备的负荷。 
     UDP/IP数据包具有多点传送能力,而且所需的应用层协议也比较简单。因此,能够有效减少终端设备的处理时间。 
     在典型的控制系统中,预期的通讯连接通常需要以几个毫秒为周期,频繁进行数据交换。UDP数据包并不是直接传送给具有“真实”IP地址的接收设备,而是通过一个IP多点传送地址来发送数据。同基于CIP连接标识的点对点传输方式相比较,这种方法的数据包中没有在应用层信息帧之前指定某个具体的接收节点。 
     在这种情况下,接收设备作为“消费者”,它必须事先知道这个IP多点传送地址(事先已经由“生产者”——发送设备进行了分配) 
    为了达到这一目的,必须采用非连接报文管理对象。 
    首先,通讯连接的发起设备(例如,配置为I/O模式的plc;而另外的PLC或者其它设备作为连接的目标设备)发出点对点的TCP数据包,该数据包指明了连接发起设备需要接收的数据对象,以及按照什么样的速率进行接收。 

     然后,目标设备的连接管理对象将对数据包的内容进行审核,判断其是否符合该数据对象的连接表和刷新周期。如果符合,这个数据对象将作为“生产者”发送数据(例如,采用多点传送形式),它的连接标识和相关的多点传送IP地址将一并回传给对应的“消费者”设备,如图7所示。如果不符合,UDP协议的相关IP地址和连接标识将被分配,并加载到连接管理对象中。数据不断地通过“生产者”发送,所有知道这个多点传送IP地址和连接标识的设备都可以作为“消费者”,接收并使用这些数据。 
     最后,当“消费者”设备没有连接到网络上时,必须有相应的机制去关闭这个连接。由于UDP/IP协议采用了无需应答的传输机制,所以“生产者”无法知道是否有“消费者”在线,并且还在接收它发出的数据。为此,每个“消费者”设备还需要向“生产者”发送一种特殊的周期循环报文。在这样的连接过程中,并不传输实际的应用数据,而是用于表明“消费者”设备仍然在线,因此称为“心跳”连接。例如,“生产者”设备正在发送某个数据对象,一旦该数据对象的所有心跳连接超时,那么与之相关的连接都将被关闭。 
     首先通过TCP数据包建立设备之间的连接,然后利用UDP连接进行I/O数据对象报文交换,从而将网络带宽的占用减少到最低限度。 
    当然,随着100Mbps以太网的应用,带宽占用率已经不是主要考虑的问题。这种数据通讯方式更为明显的优势在于,它最大限度地减少了终端设备需要处理的数据包,从而提高了这些设备支持隐式报文连接的数目。 
     VI. EtherNet/IP网络的优势 
     由于ControlNet、DeviceNet和EtherNet/IP都使用相同的应用层协议,所以它们之间能够共享对象库和设备描述信息。这些数据对象和描述信息可以让不同厂商的复杂设备实现即插即用和互操作。数据对象的定义非常严格,在同一网络中,可以完成实时I/O信息、配置信息以及诊断信息的传送。这就意味着无需编制特殊的软件,便可以将各种复杂的设备,例如变频器、机器人控制器、条形码扫描器、称重仪等设备连接在一起。这样一来,不仅能够快速构建控制系统,还方便了对设备的诊断和维护。 
     另外,EtherNet/IP网络能够同时为用户提供显式(信息)报文和隐式(控制)报文传输服务。这样一来,EtherNet/IP网络就能够利用轮询、周期循环、状态改变等触发机制,进行点对点和多点数据传输,从而满足控制层、设备层网络的各种要求。 
     除此之外,由于ControlNet和DeviceNet的应用已经普及,全球范围内有四百多家厂商为这三种网络提供多达五百余种的设备,而且这些设备之间还能实现互操作。可见,支持EtherNet/IP网络的设备覆盖面相当广泛,其数目和种类也在不断增长。 
    VII. 结论 
    由于采用了三项先进的技术:100Mbps快速以太网、交换式以太网和终端设备全双工通讯方式,不仅减少了以太网数据冲突的可能性,还使得基于以太网的I/O控制成为可能。 
    以太网和TCP/IP协议已经十分普及,大多数用户都以此为基础,构建网络,进行各种网络应用。同时,以太网还支持广泛的兼容设备,提供较高的数据吞吐量,而且相关配件的价格也在逐渐降低。可以预见,无论是分布式通讯,还是点对点的数据交换,从企业内部的Intranet网络到贯穿全球的Internet,都将是以太网的天下。在这种环境下,车间现场的以太网设备不仅要在同一个网络中实现控制功能,还要与企业的信息系统进行互操作。用户也需要将不同厂商的设备集成在一起。为了实现这一目标,设备所采用的应用层协议应该具备如下条件: 
    基于TCP/IP以及UDP/IP协议 
    使用分布式对象模型 
    允许控制报文和信息报文在同一以太网中共存 
    提供基于生产者/消费者通讯模式的网络服务 
    满足工业自动化系统的各项要求 
    能够被广大自动化设备厂商接受并实施 
    在工业自动化领域,实时控制能力和通用的操作性尤为重要。这些功能都可以通过TCP/UDP/IP协议在以太网上实现。 

12345

看过《EtherNet/IP工业以太网协议白皮书》的人还看了以下文章:

发表评论

最新评论

电工学习网 ( )

GMT+8, 2023-5-30 20:38

Powered by © 2011-2022 www.shop-samurai.com 版权所有 免责声明 不良信息举报

技术驱动未来! 电工学习网—专业电工基础知识电工技术学习网站。

栏目导航: 工控家园 | 三菱plc | 西门子plc | 欧姆龙plc | plc视频教程

返回顶部